8. G*Power

http://www.psycho.uniduesseldorf.de/abteilungen/aap/g power3/

8. Stichprobenumfang, Effekt- und Teststärke

- 8. Stichprobenumfangsplanung, Effektstärken und Teststärkenberechnung mit G*Power 3.0
- 8.1 Stichprobenumfangsplanung
 - t-Test
 - Varianzanalyse
- 8.2 Effektstärkenberechnung
 - t-Test
 - Varianzanalyse
- 8.3 Teststärkenberechnung
 - t-Test
 - Varianzanalyse

8. Stichprobenumfang, Effekt- und Teststärke Lernziele

- Wie berechnet man den optimalen Stichprobenumfang mit GPower?
- Wie berechnet man die Effektstärke mit GPower?
- Wie berechnet man die Teststärke mit GPower?

EDV-Tutorium (A)+(B)

Buchwald & Thielgen (2008)

101

8. Stichprobenumfang, Effekt- und Teststärke

Zur Erinnerung: Determinanten des t-Tests (1)

WAHRSCHEINLICHKEITEN

- ...bezogen auf die Nullhypothese
 - $-1-\alpha$ H₀ gilt / Entscheidung für H₀
 - H₀ gilt / Entscheidung für H₁ (Alphafehler)
- ...bezogen auf die Alternativhypothese
 - 1 β
 H₁ gilt / Entscheidung für H₂ (Teststärke)
 B
 H₂ gilt / Entscheidung für H₂ (Retafehler)
 - H₁ gilt / Entscheidung für H₀ (Betafehler)

EDV-Tutorium (A)+(B)

Buchwald & Thielgen (2008)

8. Stichprobenumfang, Effekt- und Teststärke

Zur Erinnerung: Determinanten des t-Tests (2)

STICHPROBENUMFANG

- Stichprobenumfang
 - Nobs

EDV-Tutorium (A)+(B)

Buchwald & Thielgen (2008)

103

8. Stichprobenumfang, Effekt- und Teststärke

Zur Erinnerung: Determinanten des t-Tests (3) (Bortz, 1999)

FFFFKTSTÄRKE

• bezogen auf die Mittelwerte

G*Power

$$d = \frac{\overline{x}_1 - \overline{x}_2}{s_x}$$

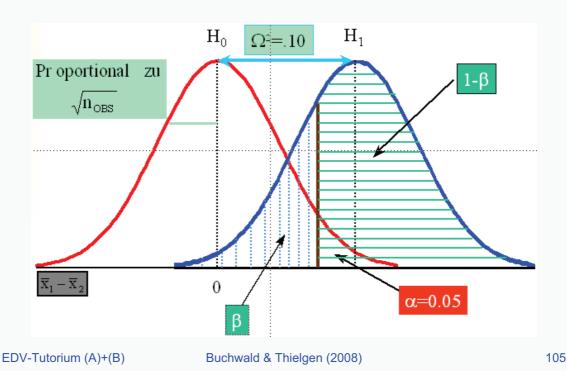
bezogen auf die Varianz (⇒ Stichprobenebene)

SPSS

$$\eta = \frac{QS_{treat}}{QS_{tot}}$$

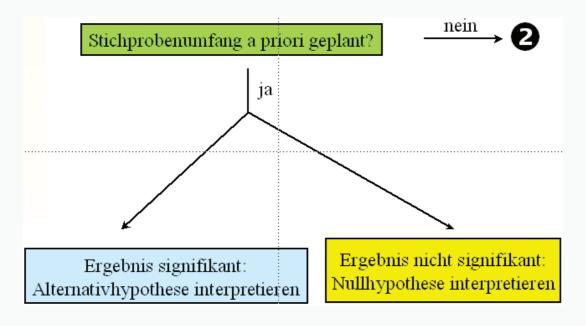
• bezogen auf die Varianz (⇒ Populationsebene)

MANUELL


$$\omega^{2} = \frac{QS_{treat} - (p-1) \cdot \sigma_{Fehler}^{2}}{QS_{tot} + \sigma_{Fehler}^{2}}$$

EDV-Tutorium (A)+(B)

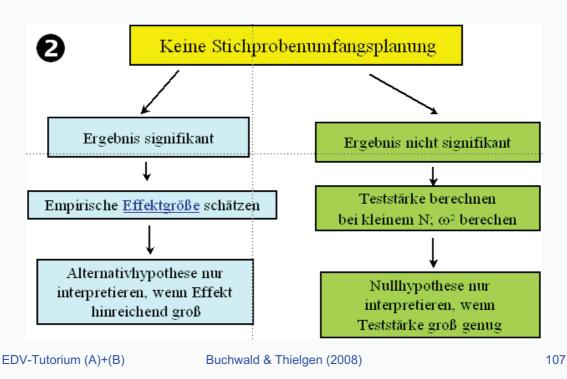
Buchwald & Thielgen (2008)


8. Stichprobenumfang, Effekt- und Teststärke

Zur Erinnerung: Zusammenhang der drei Größen

8. Stichprobenumfang, Effekt- und Teststärke

Zur Erinnerung: Vorgehensweise Versuchsplanung/-auswertung (1)



EDV-Tutorium (A)+(B)

Buchwald & Thielgen (2008)

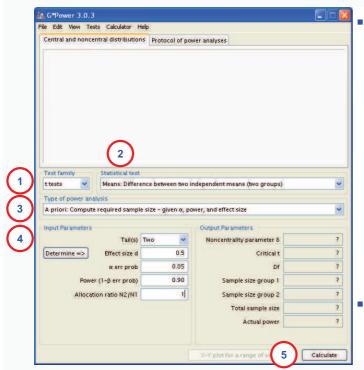
8. Stichprobenumfang, Effekt- und Teststärke

Zur Erinnerung: Vorgehensweise Versuchsplanung/-auswertung (2)

8.1 Stichprobenumfangsplanung

t-Test (1) - Beispiel

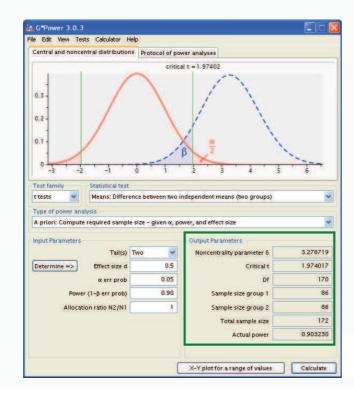
GEGEBEN


- d = .50
- $-\alpha = .05$
- $\beta = .10$

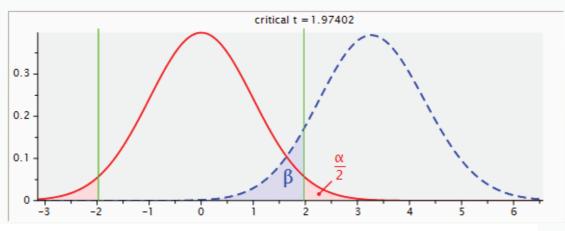
GESUCHT

- $n_1 = n_2 = ?$

Beispiel


t-Test (2) – GPower: Eingabe

- Es müssen folgende Parameter eingegeben werden:
- 1. Testklasse
 - *⇒ t-tests*
- 2. Statistischer Test
 - ⇒ two independent means
- 3. Art der Analyse
 - ⇒ A priori
- 4. Determinanten
 - ⇒ einseitig/zweiseitig
 - ⇒ Effektgröße d
 - ⇒ Alphafehler (a err prob)
 - ⇒ Teststärke (power)
- Durch Klick auf *Calculate* (5) wird das Ergebnis berechnet

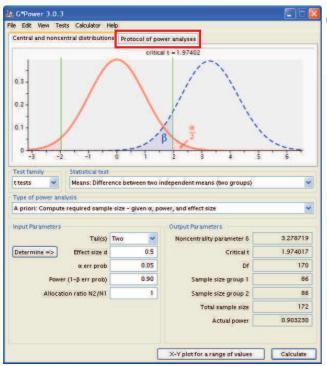

8.1 Stichprobenumfangsplanung

t-Test (3) – GPower: Ergebnis

Ergebnis der Stichprobenumfangsplanung

Interpretation

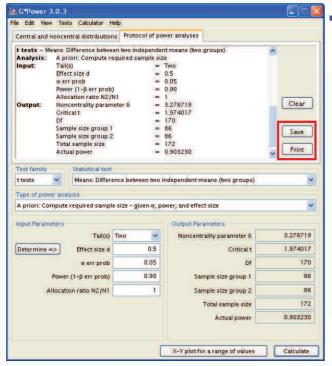
Ergebnis – zentrale und nonzentrale Verteilung


EDV-Tutorium (A)+(B)

Buchwald & Thielgen (2008)

111

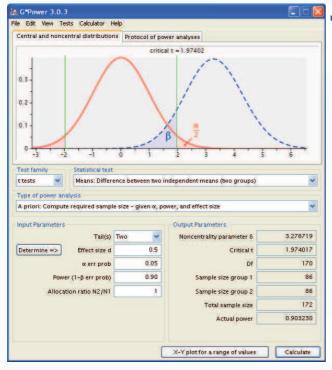
8.1 Stichprobenumfangsplanung


t-Test (4) – GPower: Ergebnisprotokoll

Durch Klick auf *Protocol*...

Ergebnis der Stichprobenumfangsplanung

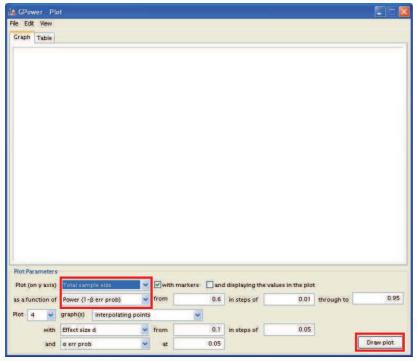
t-Test (4) - GPower: Ergebnisprotokoll



 ...wird der zweite Reiter angezeigt:
 Hier findet man das Ergebnis auf einem Protokoll;
 man kann es sichern,
 oder ausdrucken.

Ergebnis der Stichprobenumfangsplanung - Protokoll

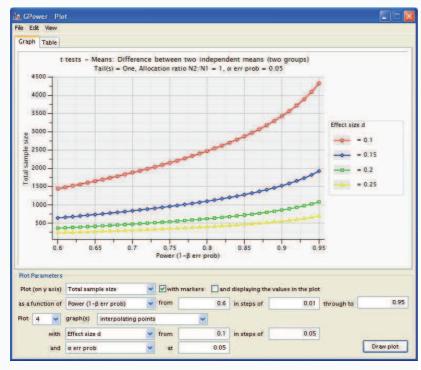
8.1 Stichprobenumfangsplanung


t-Test (5) – GPower: Anzeige der Wertebereiche

Durch Klick auf X-Y Plot...

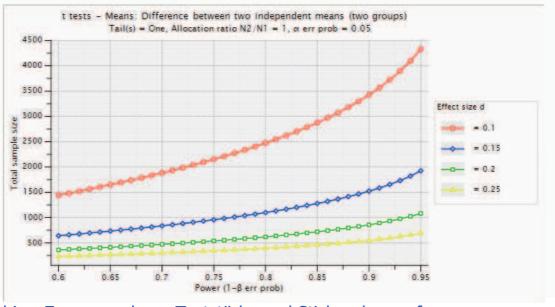
Ergebnis der Stichprobenumfangsplanung

t-Test (5) - GPower: Anzeige der Wertebereiche



- ...öffnet sich ein
 Fenster:
 Hier kann man sich
 alle möglichen
 Zusammenhänge
 zwischen den
 Kennwerten
 des t-Tests
 anzeigen lassen.
- Man erhält das Ergebnis durch Klick auf
 Draw Plot.

Auswahl Determinante


8.1 Stichprobenumfangsplanung

t-Test (5) – GPower: Anzeige der Wertebereiche

hier: Zusammenhang Teststärke und Stichprobenumfang bei unterschiedlichen Effektgrößen d

Interpretation

hier: Zusammenhang Teststärke und Stichprobenumfang

EDV-Tutorium (A)+(B)

Buchwald & Thielgen (2008)

117

8.1 Stichprobenumfangsplanung Parameter

• Wenn man eine Stichprobenumfangsplanung durchführen will, dann müssen folgende Parameter angegeben werden:

Parameter: t-Test

t-Test für unabhängige Stichproben

Test family

⇒ t-tests

Statistical test

⇒ Means: Difference between two independent means (two groups)

Type of power analysis

 \Rightarrow A priori: Compute required sample size – given α , power, effect size

Effektgröße

⇒ d

EDV-Tutorium (A)+(B)

Buchwald & Thielgen (2008)

119

8.1 Stichprobenumfangsplanung

Parameter: t-Test

• t-Test für abhängige Stichproben

Test family

⇒ t-tests

Statistical test

⇒ Means: Difference between two dependent means (matched pairs)

Type of power analysis

 \Rightarrow A priori: Compute required sample size – given α , power, effect size

Effektgröße

 \Rightarrow d

EDV-Tutorium (A)+(B)

Buchwald & Thielgen (2008)

Parameter: Varianzanalyse

Einfaktorielle Varianzanalyse

Test family

⇒ F-tests

Statistical test

⇒ ANOVA: Fixed effects, omnibus, one-way

Type of power analysis

 \Rightarrow A priori: Compute required sample size – given α , power, effect size

Effektgröße

EDV-Tutorium (A)+(B)

Buchwald & Thielgen (2008)

121

8.1 Stichprobenumfangsplanung

Parameter: Varianzanalyse

• Mehrfaktorielle Varianzanalyse

Test family

⇒ F-tests

Statistical test

⇒ ANOVA: Fixed effects, special, main effects and interactions

Type of power analysis

 \Rightarrow A priori: Compute required sample size – given α , power, effect size

Effektgröße

⇒ f

EDV-Tutorium (A)+(B)

Buchwald & Thielgen (2008)

Parameter: Varianzanalyse

- Varianzanalyse mit Messwiederholung (1)
 - bezogen auf nicht messwiederholte Faktoren -

Test family

⇒ F-tests

Statistical test

⇒ ANOVA: Repeated measures, between factors

Type of power analysis

 \Rightarrow A priori: Compute required sample size – given α , power, effect size

Effektgröße

⇒ f

EDV-Tutorium (A)+(B)

Buchwald & Thielgen (2008)

123

8.1 Stichprobenumfangsplanung

Parameter: Varianzanalyse

- Varianzanalyse mit Messwiederholung (2)
 - bezogen auf messwiederholte Faktoren -

Test family

⇒ F-tests

Statistical test

⇒ ANOVA: Repeated measures, within factors

Type of power analysis

 \Rightarrow A priori: Compute required sample size – given α , power, effect size

Effektgröße

⇒ f

EDV-Tutorium (A)+(B)

Buchwald & Thielgen (2008)

Parameter: Varianzanalyse

- Varianzanalyse mit Messwiederholung (3)
 - bezogen auf Interaktion nicht messwiederholte Faktoren und messwiederholte Faktoren -

Test family

⇒ F-tests

Statistical test

⇒ ANOVA: Repeated measures, within-between interaction

Type of power analysis

 \Rightarrow A priori: Compute required sample size – given α , power, effect size

Effektgröße

⇒ f

EDV-Tutorium (A)+(B)

Buchwald & Thielgen (2008)

125

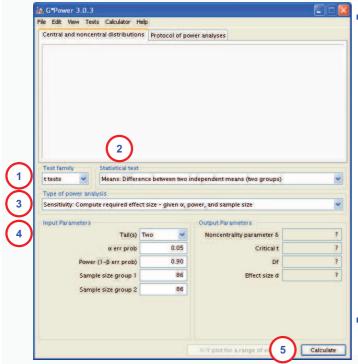
8.2 Effektstärkenberechnung

t-Test (1) - Beispiel

GEGEBEN

-
$$n_1 = n_2 = 86$$

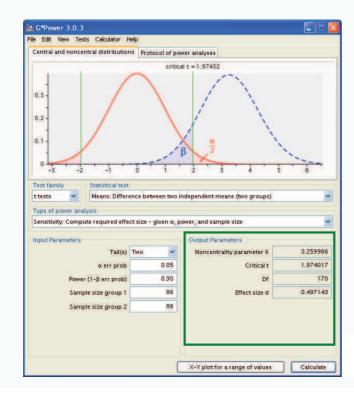
$$- \alpha = .05$$


$$- \beta = .10$$

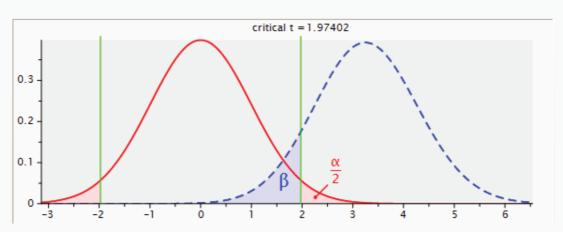
Beispiel

GESUCHT

- d = ?


t-Test (2) – GPower: Eingabe

- Es müssen folgende Parameter eingegeben werden:
- 1. Testklasse
 - *⇒ t-tests*
- 2. Statistischer Test
 - ⇒ two independent means
- 3. Art der Analyse
 - Compute required effect size
- 4. Determinanten
 - ⇒ einseitig/zweiseitig
 - ⇒ Sample size 1 / 2
 - ⇒ Alphafehler (a err prob)
 - ⇒ Teststärke (power)
- Durch Klick auf *Calculate* (5) wird das Ergebnis berechnet

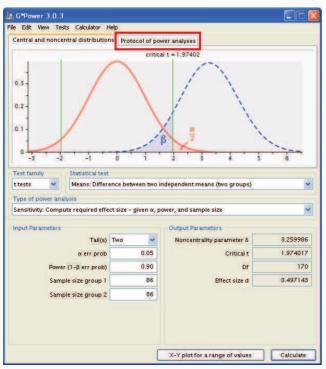

8.2 Effektstärkenberechnung

t-Test (3) – GPower: Ergebnis

Ergebnis der Effektstärkenberechnung

Interpretation

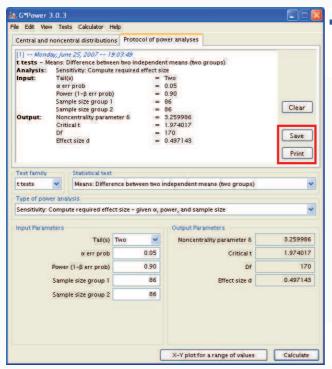
Ergebnis der Effektstärkenberechnung


EDV-Tutorium (A)+(B)

Buchwald & Thielgen (2008)

129

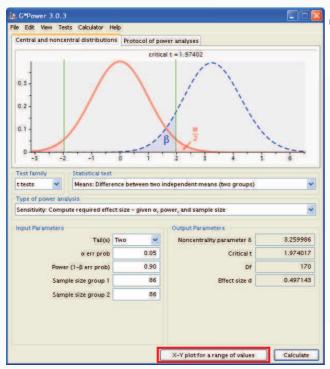
8.2 Effektstärkenberechnung


t-Test (4) – GPower: Ergebnisprotokoll

Durch Klick auf *Protocol*...

Ergebnis der Effektstärkenberechnung

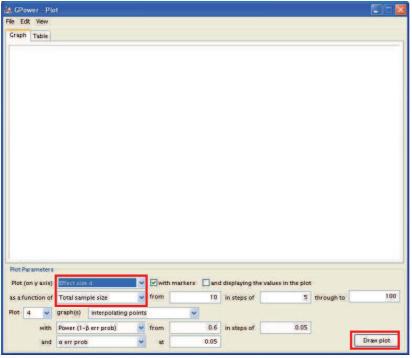
t-Test (4) – GPower: Ergebnisprotokoll



 ...wird der zweite Reiter angezeigt:
 Hier findet man das Ergebnis auf einem Protokoll;
 man kann es sichern, oder ausdrucken.

Ergebnis der Effektstärkenberechnung - Protokoll

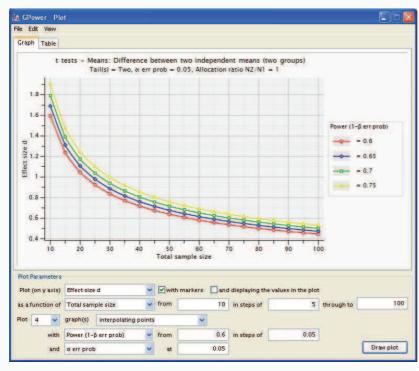
8.2 Effektstärkenberechnung


t-Test (5) - GPower: Anzeige der Wertebereiche

Durch Klick auf X-Y Plot...

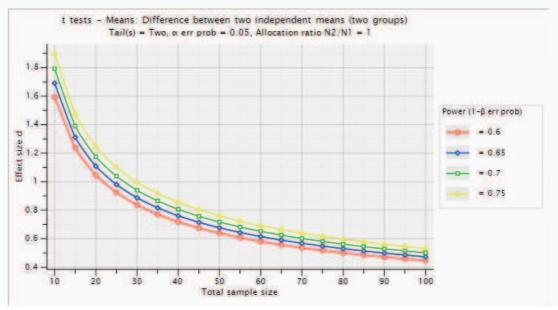
Ergebnis der Effektstärkenberechnung

t-Test (5) – GPower: Anzeige der Wertebereiche



- ...öffnet sich ein
 Fenster:
 Hier kann man sich
 alle möglichen
 Zusammenhänge
 zwischen den
 Kennwerten
 des t-Tests
 anzeigen lassen.
- Man erhält das Ergebnis durch Klick auf
 Draw Plot.

Auswahl Determinanten


8.2 Effektstärkenberechnung

t-Test (5) - GPower: Anzeige der Wertebereiche

hier: Zusammenhang Stichprobenumfang und Effektstärke d bei unterschiedlichen Teststärken

Interpretation

hier: Zusammenhang Stichprobenumfang und Effektstärke d

EDV-Tutorium (A)+(B)

Buchwald & Thielgen (2008)

135

8.2 Effektstärkenberechnung Parameter

• Wenn man eine Effektstärkenberechnung durchführen will, dann müssen folgende Parameter angegeben werden:

Parameter: t-Test

t-Test f
ür unabh
ängige Stichproben

Test family

⇒ t-tests

Statistical test

⇒ Means: Difference between two independent means (two groups)

Type of power analysis

 \Rightarrow Sensitivity: Compute required effect size – given α , power and sample size

Effektgröße

 \Rightarrow d

EDV-Tutorium (A)+(B)

Buchwald & Thielgen (2008)

137

8.2 Effektstärkenberechnung

Parameter: t-Test

• t-Test für abhängige Stichproben

Test family

⇒ t-tests

Statistical test

⇒ Means: Difference between two dependent means (matched pairs)

Type of power analysis

 \Rightarrow Sensitivity: Compute required effect size – given α , power and sample size

Effektgröße

 \Rightarrow 0

EDV-Tutorium (A)+(B)

Buchwald & Thielgen (2008)

Parameter: Varianzanalyse

Einfaktorielle Varianzanalyse

Test family

⇒ F-tests

Statistical test

⇒ ANOVA: Fixed effects, omnibus, one-way

Type of power analysis

 \Rightarrow Sensitivity: Compute required effect size – given α , power and sample size

Effektgröße

⇒ f

EDV-Tutorium (A)+(B)

Buchwald & Thielgen (2008)

139

8.2 Effektstärkenberechnung

Parameter: Varianzanalyse

• Mehrfaktorielle Varianzanalyse

Test family

⇒ F-tests

Statistical test

⇒ ANOVA: Fixed effects, special, main effects and interactions

Type of power analysis

 \Rightarrow Sensitivity: Compute required effect size – given α , power and sample size

Effektgröße

 \Rightarrow f

EDV-Tutorium (A)+(B)

Buchwald & Thielgen (2008)

Parameter: Varianzanalyse

- Varianzanalyse mit Messwiederholung (1)
 - bezogen auf nicht messwiederholte Faktoren -

Test family

⇒ F-tests

Statistical test

⇒ ANOVA: Repeated measures, between factors

Type of power analysis

⇒ Sensitivity: Compute required effect size – given α, power and sample size

Effektgröße

 \Rightarrow f

EDV-Tutorium (A)+(B)

Buchwald & Thielgen (2008)

141

8.2 Effektstärkenberechnung

Parameter: Varianzanalyse

- Varianzanalyse mit Messwiederholung (2)
 - bezogen auf messwiederholte Faktoren -

Test family

⇒ F-tests

Statistical test

⇒ ANOVA: Repeated measures, within factors

Type of power analysis

 \Rightarrow Sensitivity: Compute required effect size – given α , power and sample size

<u>Effektgröße</u>

 \Rightarrow f

EDV-Tutorium (A)+(B)

Buchwald & Thielgen (2008)

Parameter: Varianzanalyse

- Varianzanalyse mit Messwiederholung (3)
 - bezogen auf Interaktion nicht messwiederholte Faktoren und messwiederholte Faktoren -

Test family

⇒ F-tests

Statistical test

⇒ ANOVA: Repeated measures, within-between interaction

Type of power analysis

⇒ Sensitivity: Compute required effect size – given α, power and sample size

Effektgröße

⇒ f

EDV-Tutorium (A)+(B)

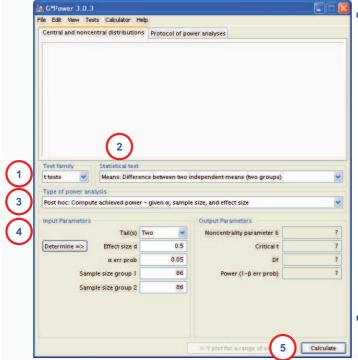
Buchwald & Thielgen (2008)

143

8.3 Teststärkenberechnung

t-Test (1) - Beispiel

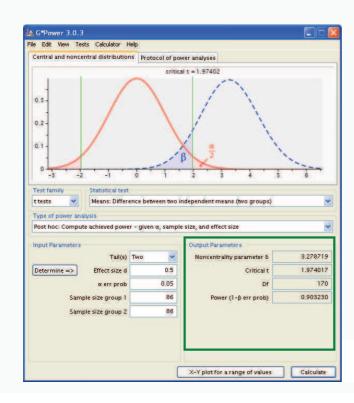
GEGEBEN


- d = .50
- $-n_1 = n_2 = 86$
- $\alpha = .05$

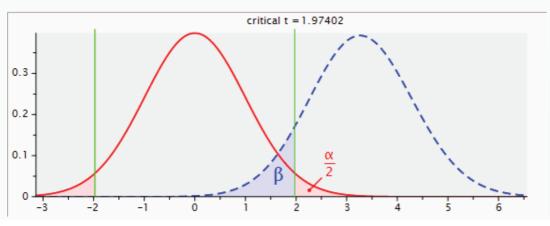
Beispiel

GESUCHT

 $-1-\beta=?$


t-Test (2) – GPower: Eingabe

- Es müssen folgende Parameter eingegeben werden:
- 1. Testklasse
 - *⇒ t-tests*
- 2. Statistischer Test
 - ⇒ two independent means
- 3. Art der Analyse
 - Compute achieved power
- 4. Determinanten
 - ⇒ einseitig/zweiseitig
 - ⇒ Effect size d
 - ⇒ Sample size 1 / 2
 - ⇒ Alphafehler (a err prob)
- Durch Klick auf *Calculate* (5) wird das Ergebnis berechnet

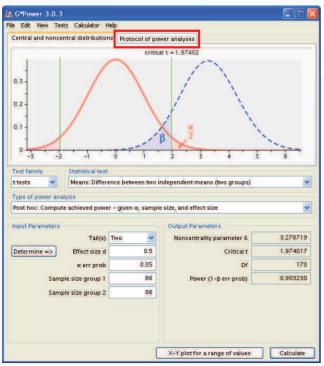

8.3 Teststärkenberechnung

t-Test (3) – GPower: Ergebnis

Ergebnis der Teststärkenberechnung

Interpretation

Ergebnis – zentrale und nonzentrale Verteilung


EDV-Tutorium (A)+(B)

Buchwald & Thielgen (2008)

147

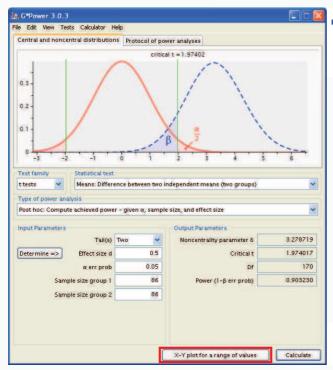
8.3 Teststärkenberechnung

t-Test (4) – GPower: Ergebnisprotokoll

Durch Klick auf *Protocol*...

Ergebnis der Teststärkenberechnung

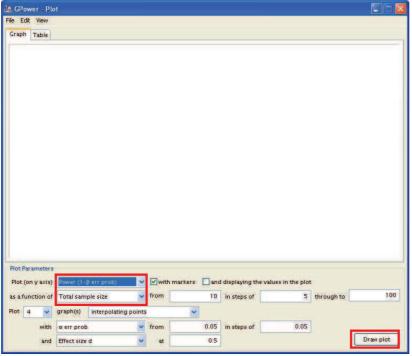
t-Test (4) – GPower: Ergebnisprotokoll



 ...wird der zweite Reiter angezeigt:
 Hier findet man das Ergebnis auf einem Protokoll;
 man kann es sichern,
 oder ausdrucken.

Ergebnis der Teststärkenberechnung - Protokoll

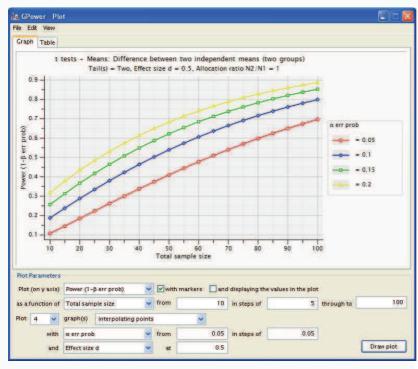
8.3 Teststärkenberechnung


t-Test (5) – GPower: Anzeige der Wertebereiche

Durch Klick auf X-Y Plot...

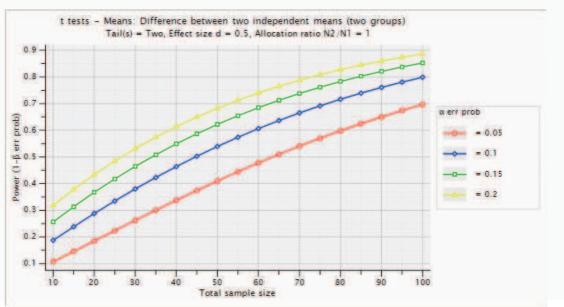
Ergebnis der Teststärkenberechnung

t-Test (5) - GPower: Anzeige der Wertebereiche



- ...öffnet sich ein
 Fenster:
 Hier kann man sich
 alle möglichen
 Zusammenhänge
 zwischen den
 Kennwerten
 des t-Tests
 anzeigen lassen.
- Man erhält das Ergebnis durch Klick auf
 Draw Plot.

Auswahl Determinanten


8.3 Teststärkenberechnung

t-Test (5) – GPower: Anzeige der Wertebereiche

hier: Zusammenhang Stichprobenumfang und Effektstärke d bei unterschiedlichen Teststärken

Interpretation

hier: Zusammenhang Stichprobenumfang und Effektstärke d

EDV-Tutorium (A)+(B)

Buchwald & Thielgen (2008)

153

8.3 Teststärkenberechnung Parameter

• Wenn man eine Teststärkenberechnung durchführen will, dann müssen folgende Parameter angegeben werden:

Parameter: t-Test

t-Test f
ür unabh
ängige Stichproben

Test family

⇒ t-tests

Statistical test

⇒ Means: Difference between two independent means (two groups)

Type of power analysis

⇒ Post hoc: Compute achieved power – given a, sample size, and effect size

Effektgröße

⇒ d

EDV-Tutorium (A)+(B)

Buchwald & Thielgen (2008)

155

8.3 Teststärkenberechnung

Parameter: t-Test

• t-Test für abhängige Stichproben

Test family

⇒ t-tests

Statistical test

⇒ Means: Difference between two dependent means (matched pairs)

Type of power analysis

⇒ Post hoc: Compute achieved power – given a, sample size, and effect size

Effektgröße

 \Rightarrow 0

EDV-Tutorium (A)+(B)

Buchwald & Thielgen (2008)

Parameter: Varianzanalyse

Einfaktorielle Varianzanalyse

Test family

⇒ F-tests

Statistical test

⇒ ANOVA: Fixed effects, omnibus, one-way

Type of power analysis

⇒ Post hoc: Compute achieved power – given a, sample size, and effect size

Effektgröße

⇒ f

EDV-Tutorium (A)+(B)

Buchwald & Thielgen (2008)

157

8.3 Teststärkenberechnung

Parameter: Varianzanalyse

• Mehrfaktorielle Varianzanalyse

Test family

⇒ F-tests

Statistical test

⇒ ANOVA: Fixed effects, special, main effects and interactions

Type of power analysis

⇒ Post hoc: Compute achieved power – given a, sample size, and effect size

Effektgröße

 \Rightarrow f

EDV-Tutorium (A)+(B)

Buchwald & Thielgen (2008)

Parameter: Varianzanalyse

- Varianzanalyse mit Messwiederholung (1)
 - bezogen auf nicht messwiederholte Faktoren -

Test family

⇒ F-tests

Statistical test

⇒ ANOVA: Repeated measures, between factors

Type of power analysis

⇒ Post hoc: Compute achieved power – given a, sample size, and effect size

Effektgröße

⇒ f

EDV-Tutorium (A)+(B)

Buchwald & Thielgen (2008)

159

8.3 Teststärkenberechnung

Parameter: Varianzanalyse

- Varianzanalyse mit Messwiederholung (2)
 - bezogen auf messwiederholte Faktoren -

Test family

⇒ F-tests

Statistical test

⇒ ANOVA: Repeated measures, within factors

Type of power analysis

⇒ Post hoc: Compute achieved power – given a, sample size, and effect size

Effektgröße

⇒ f

EDV-Tutorium (A)+(B)

Buchwald & Thielgen (2008)

Parameter: Varianzanalyse

- Varianzanalyse mit Messwiederholung (3)
 - bezogen auf Interaktion nicht messwiederholte Faktoren und messwiederholte Faktoren -

Test family

⇒ F-tests

Statistical test

⇒ ANOVA: Repeated measures, within-between interaction

Type of power analysis

⇒ Post hoc: Compute achieved power – given a, sample size, and effect size

Effektgröße

 \Rightarrow

EDV-Tutorium (A)+(B)

Buchwald & Thielgen (2008)